3.4.5 \(\int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx\) [305]

3.4.5.1 Optimal result
3.4.5.2 Mathematica [C] (verified)
3.4.5.3 Rubi [A] (verified)
3.4.5.4 Maple [A] (verified)
3.4.5.5 Fricas [B] (verification not implemented)
3.4.5.6 Sympy [F(-1)]
3.4.5.7 Maxima [F]
3.4.5.8 Giac [B] (verification not implemented)
3.4.5.9 Mupad [F(-1)]

3.4.5.1 Optimal result

Integrand size = 28, antiderivative size = 142 \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {9 \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{16 \sqrt {2} c^{7/2} f}+\frac {3 c \cos ^3(e+f x)}{f (c-c \sin (e+f x))^{9/2}}-\frac {9 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{5/2}}+\frac {9 \cos (e+f x)}{16 c^2 f (c-c \sin (e+f x))^{3/2}} \]

output
1/3*a^2*c*cos(f*x+e)^3/f/(c-c*sin(f*x+e))^(9/2)-1/4*a^2*cos(f*x+e)/c/f/(c- 
c*sin(f*x+e))^(5/2)+1/16*a^2*cos(f*x+e)/c^2/f/(c-c*sin(f*x+e))^(3/2)+1/32* 
a^2*arctanh(1/2*cos(f*x+e)*c^(1/2)*2^(1/2)/(c-c*sin(f*x+e))^(1/2))/c^(7/2) 
/f*2^(1/2)
 
3.4.5.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.10 (sec) , antiderivative size = 271, normalized size of antiderivative = 1.91 \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {3 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (32 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-28 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3+3 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5-(3+3 i) \sqrt [4]{-1} \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt [4]{-1} \left (1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^6+64 \sin \left (\frac {1}{2} (e+f x)\right )-56 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^2 \sin \left (\frac {1}{2} (e+f x)\right )+6 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^4 \sin \left (\frac {1}{2} (e+f x)\right )\right )}{16 f (c-c \sin (e+f x))^{7/2}} \]

input
Integrate[(3 + 3*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^(7/2),x]
 
output
(3*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(32*(Cos[(e + f*x)/2] - Sin[(e + 
f*x)/2]) - 28*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3 + 3*(Cos[(e + f*x)/2 
] - Sin[(e + f*x)/2])^5 - (3 + 3*I)*(-1)^(1/4)*ArcTan[(1/2 + I/2)*(-1)^(1/ 
4)*(1 + Tan[(e + f*x)/4])]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^6 + 64*Si 
n[(e + f*x)/2] - 56*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^2*Sin[(e + f*x)/ 
2] + 6*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^4*Sin[(e + f*x)/2]))/(16*f*(c 
 - c*Sin[e + f*x])^(7/2))
 
3.4.5.3 Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.17, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {3042, 3215, 3042, 3159, 3042, 3159, 3042, 3129, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^2}{(c-c \sin (e+f x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^2}{(c-c \sin (e+f x))^{7/2}}dx\)

\(\Big \downarrow \) 3215

\(\displaystyle a^2 c^2 \int \frac {\cos ^4(e+f x)}{(c-c \sin (e+f x))^{11/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \int \frac {\cos (e+f x)^4}{(c-c \sin (e+f x))^{11/2}}dx\)

\(\Big \downarrow \) 3159

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\int \frac {\cos ^2(e+f x)}{(c-c \sin (e+f x))^{7/2}}dx}{2 c^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\int \frac {\cos (e+f x)^2}{(c-c \sin (e+f x))^{7/2}}dx}{2 c^2}\right )\)

\(\Big \downarrow \) 3159

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\int \frac {1}{(c-c \sin (e+f x))^{3/2}}dx}{4 c^2}}{2 c^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\int \frac {1}{(c-c \sin (e+f x))^{3/2}}dx}{4 c^2}}{2 c^2}\right )\)

\(\Big \downarrow \) 3129

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx}{4 c}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^2}}{2 c^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx}{4 c}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^2}}{2 c^2}\right )\)

\(\Big \downarrow \) 3128

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {1}{2 c-\frac {c^2 \cos ^2(e+f x)}{c-c \sin (e+f x)}}d\left (-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{2 c f}}{4 c^2}}{2 c^2}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{2 \sqrt {2} c^{3/2} f}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^2}}{2 c^2}\right )\)

input
Int[(a + a*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^(7/2),x]
 
output
a^2*c^2*(Cos[e + f*x]^3/(3*c*f*(c - c*Sin[e + f*x])^(9/2)) - (Cos[e + f*x] 
/(2*c*f*(c - c*Sin[e + f*x])^(5/2)) - (ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqr 
t[2]*Sqrt[c - c*Sin[e + f*x]])]/(2*Sqrt[2]*c^(3/2)*f) + Cos[e + f*x]/(2*f* 
(c - c*Sin[e + f*x])^(3/2)))/(4*c^2))/(2*c^2))
 

3.4.5.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3129
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c 
+ d*x]*((a + b*Sin[c + d*x])^n/(a*d*(2*n + 1))), x] + Simp[(n + 1)/(a*(2*n 
+ 1))   Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] 
&& EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
 

rule 3159
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[2*g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f 
*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Simp[g^2*((p - 1)/(b^2*(2*m + p + 1 
)))   Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; 
FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] & 
& NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]
 

rule 3215
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + 
 d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[ 
b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((Lt 
Q[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 
3.4.5.4 Maple [A] (verified)

Time = 3.25 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.73

method result size
default \(-\frac {a^{2} \left (3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{3}\left (f x +e \right )\right ) c^{4}+24 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c^{\frac {7}{2}}-32 \left (c \left (\sin \left (f x +e \right )+1\right )\right )^{\frac {3}{2}} c^{\frac {5}{2}}-6 \left (c \left (\sin \left (f x +e \right )+1\right )\right )^{\frac {5}{2}} c^{\frac {3}{2}}-9 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{2}\left (f x +e \right )\right ) c^{4}+9 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sin \left (f x +e \right ) c^{4}-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{4}\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}}{96 c^{\frac {15}{2}} \left (\sin \left (f x +e \right )-1\right )^{2} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(245\)
parts \(\text {Expression too large to display}\) \(748\)

input
int((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x,method=_RETURNVERBOSE)
 
output
-1/96*a^2*(3*2^(1/2)*arctanh(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2)) 
*sin(f*x+e)^3*c^4+24*(c*(sin(f*x+e)+1))^(1/2)*c^(7/2)-32*(c*(sin(f*x+e)+1) 
)^(3/2)*c^(5/2)-6*(c*(sin(f*x+e)+1))^(5/2)*c^(3/2)-9*2^(1/2)*arctanh(1/2*( 
c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)^2*c^4+9*2^(1/2)*arctan 
h(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)*c^4-3*2^(1/2)*a 
rctanh(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2))*c^4)*(c*(sin(f*x+e)+1 
))^(1/2)/c^(15/2)/(sin(f*x+e)-1)^2/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f
 
3.4.5.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 440 vs. \(2 (133) = 266\).

Time = 0.28 (sec) , antiderivative size = 440, normalized size of antiderivative = 3.10 \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {3 \, \sqrt {2} {\left (a^{2} \cos \left (f x + e\right )^{4} - 3 \, a^{2} \cos \left (f x + e\right )^{3} - 8 \, a^{2} \cos \left (f x + e\right )^{2} + 4 \, a^{2} \cos \left (f x + e\right ) + 8 \, a^{2} + {\left (a^{2} \cos \left (f x + e\right )^{3} + 4 \, a^{2} \cos \left (f x + e\right )^{2} - 4 \, a^{2} \cos \left (f x + e\right ) - 8 \, a^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {c} \log \left (-\frac {c \cos \left (f x + e\right )^{2} + 2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} \sqrt {c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) + {\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) - 4 \, {\left (3 \, a^{2} \cos \left (f x + e\right )^{3} + 25 \, a^{2} \cos \left (f x + e\right )^{2} - 10 \, a^{2} \cos \left (f x + e\right ) - 32 \, a^{2} + {\left (3 \, a^{2} \cos \left (f x + e\right )^{2} - 22 \, a^{2} \cos \left (f x + e\right ) - 32 \, a^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{192 \, {\left (c^{4} f \cos \left (f x + e\right )^{4} - 3 \, c^{4} f \cos \left (f x + e\right )^{3} - 8 \, c^{4} f \cos \left (f x + e\right )^{2} + 4 \, c^{4} f \cos \left (f x + e\right ) + 8 \, c^{4} f + {\left (c^{4} f \cos \left (f x + e\right )^{3} + 4 \, c^{4} f \cos \left (f x + e\right )^{2} - 4 \, c^{4} f \cos \left (f x + e\right ) - 8 \, c^{4} f\right )} \sin \left (f x + e\right )\right )}} \]

input
integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")
 
output
1/192*(3*sqrt(2)*(a^2*cos(f*x + e)^4 - 3*a^2*cos(f*x + e)^3 - 8*a^2*cos(f* 
x + e)^2 + 4*a^2*cos(f*x + e) + 8*a^2 + (a^2*cos(f*x + e)^3 + 4*a^2*cos(f* 
x + e)^2 - 4*a^2*cos(f*x + e) - 8*a^2)*sin(f*x + e))*sqrt(c)*log(-(c*cos(f 
*x + e)^2 + 2*sqrt(2)*sqrt(-c*sin(f*x + e) + c)*sqrt(c)*(cos(f*x + e) + si 
n(f*x + e) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e) - 2*c)*sin(f*x + e) + 
 2*c)/(cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2 
)) - 4*(3*a^2*cos(f*x + e)^3 + 25*a^2*cos(f*x + e)^2 - 10*a^2*cos(f*x + e) 
 - 32*a^2 + (3*a^2*cos(f*x + e)^2 - 22*a^2*cos(f*x + e) - 32*a^2)*sin(f*x 
+ e))*sqrt(-c*sin(f*x + e) + c))/(c^4*f*cos(f*x + e)^4 - 3*c^4*f*cos(f*x + 
 e)^3 - 8*c^4*f*cos(f*x + e)^2 + 4*c^4*f*cos(f*x + e) + 8*c^4*f + (c^4*f*c 
os(f*x + e)^3 + 4*c^4*f*cos(f*x + e)^2 - 4*c^4*f*cos(f*x + e) - 8*c^4*f)*s 
in(f*x + e))
 
3.4.5.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {Timed out} \]

input
integrate((a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**(7/2),x)
 
output
Timed out
 
3.4.5.7 Maxima [F]

\[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")
 
output
integrate((a*sin(f*x + e) + a)^2/(-c*sin(f*x + e) + c)^(7/2), x)
 
3.4.5.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 386 vs. \(2 (133) = 266\).

Time = 0.41 (sec) , antiderivative size = 386, normalized size of antiderivative = 2.72 \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {\frac {12 \, \sqrt {2} a^{2} \log \left (-\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1}\right )}{c^{\frac {7}{2}} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {\sqrt {2} {\left (a^{2} \sqrt {c} + \frac {3 \, a^{2} \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} - \frac {3 \, a^{2} \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} - \frac {22 \, a^{2} \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}\right )} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}{c^{4} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {\sqrt {2} {\left (\frac {3 \, a^{2} c^{\frac {17}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} - \frac {3 \, a^{2} c^{\frac {17}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} - \frac {a^{2} c^{\frac {17}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}\right )}}{c^{12} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{768 \, f} \]

input
integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")
 
output
1/768*(12*sqrt(2)*a^2*log(-(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4* 
pi + 1/2*f*x + 1/2*e) + 1))/(c^(7/2)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) 
+ sqrt(2)*(a^2*sqrt(c) + 3*a^2*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1 
)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) - 3*a^2*sqrt(c)*(cos(-1/4*pi + 1/2* 
f*x + 1/2*e) - 1)^2/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2 - 22*a^2*sqrt(c 
)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 
 1)^3)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3/(c^4*(cos(-1/4*pi + 1/2*f*x 
+ 1/2*e) - 1)^3*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + sqrt(2)*(3*a^2*c^(1 
7/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) 
+ 1) - 3*a^2*c^(17/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*pi 
+ 1/2*f*x + 1/2*e) + 1)^2 - a^2*c^(17/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 
 1)^3/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3)/(c^12*sgn(sin(-1/4*pi + 1/2* 
f*x + 1/2*e))))/f
 
3.4.5.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{7/2}} \,d x \]

input
int((a + a*sin(e + f*x))^2/(c - c*sin(e + f*x))^(7/2),x)
 
output
int((a + a*sin(e + f*x))^2/(c - c*sin(e + f*x))^(7/2), x)